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Previously, there have been studies to identify 
DNA-binding proteins and the corresponding DNA-binding
sites on the basis of their characteristics. Ref. 8 used
electrostatic properties, accessibility and hydrophobicity of 
the residues to predict DNA-binding sites with 68% accuracy.
Ref. 9 trained neural networks to identify binding residues
using their neighbors and solvent accessibility. Although they 
reported an accuracy of 79%, their sensitivity was below
40%.

Abstract— Annotation of the functional sites on the surface of 
a protein has been the subject of many studies. In this regard,
the search for attributes and features characterizing these sites
is of prime consequence. Here, we present an implementation of 
a kernel-based machine learning protocol for identifying
residues on a DNA-binding protein form the interface with the 
DNA. Sequence and structural features including solvent 
accessibility, local composition, net charge and electrostatic 
potentials are examined. These features are then fed into
Support Vector Machines (SVM) to predict the DNA-binding
residues on the surface of the protein. Here, we explore this issue in the framework of Support

Vector Machines (SVM). We train SVM on an ensemble of 
possibly significant properties and subsequently predict
binding residues using our “learned” model.  SVM has been
used with success in various areas of bioinformatics [10-12].
Earlier we successfully applied SVM to protein fold
recognition & prediction of DNA-binding proteins [13,14].
Our goal here is to combine these methods to achieve a more
poised success in prediction of DNA-binding residues. 

In order to compare with published work, we predict binding
residues by training on other binding and non-binding residues
in the same protein for which we achieved an accuracy of 79%.
The sensitivity and specificity are 59% and 89%.  We also
consider a more realistic approach, predicting the binding
residues of proteins entirely withheld from the training set
achieving values of 66%, 43% and 81%, respectively.
Performances reported here are better than other published 
results. Moreover, since our protocol does not lean on sequence
or structural homology, it can be used to annotate unclassified
proteins and more generally to identify novel binding sites with
no similarity to the known cases. II. MATERIALS AND METHODS

A. DatasetKeywords—protein-DNA interaction, function annotation,
SVMs, binding site prediction. In this study, we used a dataset of 115 protein-DNA

complexes of crystallographic resolution better than 3 Å. The
dataset was obtained by combining datasets of previous
associated studies [9,15] and included proteins from various
structural families. A complete list of the proteins used here is 
available at http://proteomics.bioengr.uic.edu/pro-dna.

I. INTRODUCTION

STRUCTURE of a protein governs the biological function it
is involved in [1]. Inherent to structure are many

functional sites that help proteins to recognize their targets for 
transport, transcription, catalysis or signal transduction.
Identifying these functional sites would help in assigning the
protein to its set(s) of functions [2].

B. Definition of a surface binding residue
First, hydrogen atoms were added to all the structures

using a publicly available software package REDUCE [16]. 
Every residue on each protein was classified as a 'surface'
residue if its surface area exposed was more than 40% of its 
total area. Otherwise, it was classified as 'buried'. Further, we 
classified a surface residue as 'binding' if any of its atoms fell
within a distance of 4.5 Å to any atom of DNA. 

DNA-binding sites on the surface of a DNA-binding
protein are one type of such functional sites. These sites show
many structure and sequence based characteristics that 
contribute to the DNA binding e.g. electrostatic features, 
charge complementarity and amino acids preference [3-7]. 
An automated framework for annotation of such features
would aid in identification of binding residues on the surface 
of the protein.

C. Feature Construction
Carefully selecting relevant features capable of 

discriminating the binding residues from the non-binding
ones is the key to achieving a high accuracy in identification 
of binding sites on a protein's surface.  Such evaluation of 
features entails characteristics congenial to DNA-binding.
For example, given the negatively charged backbone of 
DNA, charge and electrostatic complementarity is expected
to play an important role in DNA-binding. In the following 
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Cw wpoints, we identify an array of such meaningful features for 
the SVM to locate the binding sites. 

1) Charge of each residue: Charge reciprocality of a 
residue intuitively seems to play a role in binding of a residue
to the DNA. So, we used the net charge of a residue as one of
the features for classification. We assigned a charge of +1 to
Arg and Lys and -1 to Asp and Glu. His was specified a charge 
of +0.5 and all others were taken as neutral.
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2) Average Potential on a residue: We used Delphi (v4) 
[17] for all electrostatic calculations in this study. This tool
solves the non-linear Poisson-Boltzmann using
finite-difference methods to calculate the potential at
specified points. Electrostatic potentials at the site of all the
atoms in a protein were reported in the absence of the DNA.
The CHARMM [18] force-field parameters were employed
for assignment of partial charges to the atoms. The Salt 
concentration and temperature were fixed at 145 mM/liter
and 298 K, respectively. The dielectric constants were
specified at 2.0 and 80.0 for the protein and the solvent. A 
fine-resolution grid structure with a scale of 2 (grids/Å) was 
employed. The center of the grid architecture was translated 
to overlap with the geometric center of the protein. The 
protein was made to fill half of the total volume of the grid
cubic by specifying a percentage fill of 50. Default values of
all other parameters were used. After calculating the potential
at the site of every atom of a residue, it was assigned a 
potential equal to the average of the potentials on all its
atoms.

where xi is a feature vector labeled by y { 1, 1}
i

,

( , ), 1,..., ,x y i m
i i

,  and C is a parameter. The given model

summarizes the so-called soft-margin SVM, which tolerates
noise within the data.  It does so by generating a separating
plane using the equation ( ) ( )f x x w b 0

( )j jw x

( )j i

.  Through 
the representation of , we obtain

( ) (ji i )x w x x . This provides an efficient

approach to solve SVM without the explicit use of the
nonlinear transformation (21).

We use the LIBSVM implementation of SVM and found
the polynomial kernel to give the best accuracy (20).  The 
polynomial kernel consists of a family of polynomials
represented as follows: , ,

dT
i j i jx x r 0K x x (21).

Tuning d, r, and , we can select the best possible model using
the weighted-average accuracy of n-fold cross-validation. 

III. RESULTS

All the members (residues) of the dataset with their
corresponding feature vectors and classes (DNA-binding or 
non-DNA-binding residue as defined above) associated with
each member were given as input to SVM. For each residue,
the length of a feature vector was 29 (1 for the net charge,
average potential & ASA, 6 for the secondary structure
assignment and 20 for residue neighbors). During 'training',
SVM projects the data to a higher dimensional feature space
and relying on rigorous optimization theory finds the
maximal margin hyperplane that best separates the two
classes. During 'testing' with a learned model, SVM attempts
to correctly predict the class of every member of the test set 
using their corresponding feature vectors.

3) Secondary structure. We appraised six secondary
structures for every residue in the protein and computed the
relative frequency of amino acids in these states to judge if
there was an inclination for any particular structural state.
DSSP [19] was used to assign every residue to one of the six 
structural classes.

4) Solvent Accessible Surface Area (ASA).  In order to
determine the correlation of ASA with a residue's propensity
to bind, we calculated the relative ASA of every residue from
DSSP.

5) Residue neighbors. Previous studies have shown that
DNA-binding in unlikely to involve a single residue-base
interaction [9]. Instead, it originates from multiple
interactions between the two sides. For a specific locale on a 
protein to be in the vicinity of the DNA, its neighborhood
residues should also be favorable. So, we complied a list of all
the neighbors of every residue that were within a distance of 
4.5Å from that residue.

To assess how well SVM performs, we employed several
validation techniques. In cross-validation, SVM is trained on 
one subset and then tested on another subset. We divided the
dataset into two subsets. Dataset 1, consisting of 40 proteins,
was tested with jackknife test (Leave-one-out) at two levels:
residue and protein. At the residue level, for every protein, all
but one residue was used for training and the class of the
“left-out” residue was then predicted. This was repeated until
each residue was tested. Accuracy is defined as the fraction of 
total correct predictions. Sensitivity is TP/(TP+FN), and
selectivity is TN/(TN+FP). Unlike previous studies [9] we
listed only the 'surface' residues for classification. Taking this 
reasonable step, we avoided a higher imbalance in the data,
otherwise present due to the comparatively lower fraction of
binding residues (to non-binding). We reduced the
unevenness from 1:10 (1 binding residue for every 10 

D. SVM protocol
SVM solves a binary class problem by finding the

maximum margin between two classes of data. . It uses a
nonlinear transformation (a kernel function) to map the input
data to a higher dimensional feature space where the classes
become linearly separable.  In other words, this is equivalent
to solving the quadratic optimization problem:
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Fig. 1. Box-and-whisker plot of prediction performance for leave-one-out at
the residue level. Shown on the horizontal axis is the sensitivity, specificity, 
positive predication, negative prediction, accuracy and the net prediction. 
Positive prediction is defined as TP/(TP+FP) and negative prediction as 
TN/(TN+FN).

Fig. 2. Box-and-whisker plot of prediction performance for leave-one-out at
the protein level.

Next, we used the 'holdout method' on Dataset 2 consisting
of the remaining 75 proteins. One of the classification models
(randomly picked) created during the jackknife test at the
protein level was used to predict the class of every residue on
all the 75 proteins. This resulted in a set of 75 accuracies.

residues) to 1:5. A high disparity in the ratio between positive
and negative classes in the data artificially inflates the
accuracy while still giving a poor sensitivity and distorting
the picture. This is a more realistic approach as the model is built on a

known case and is tested on the cases that it has not seen so 
far. The box-and-whisker plot of performance using this
technique (fig. 3) shows that the success rates of this
validation method is very similar to leave-one-out at the
protein level. Specifically, this demonstrates that
classification patterns that SVM can recognize for classifying
the first 40 proteins also holds good for the remaining 75
proteins.

Note, that our dataset is harder than datasets that use
internal residues, in that, internal residues are easier to predict
as non-binding given that such residues are not exposed to
perform the binding function.

Fig. 1 box-plots various performance criteria for 
leave-one-out at the residue level collected over all the 40
proteins. Our prediction accuracy ranged from 61% to 91% 
with a mean of 79%; in other words, on an average, we could
correctly predict 79% of the residues on a given protein.
Although this value is similar to the one reported earlier [9], it
is more representative because our data is more balanced in 
terms of positive and negative cases. Our sensitivity values,
however, showed a high fluctuation ranging from 12% to
83%. The mean sensitivity value was around 59%, a 19%
improvement over a similar study done earlier that used the
same validation technique and reported a sensitivity of 40%
[9]. We also report a 11% improvement in net prediction
(defined as (sensitivity + specificity)/2), which can be a more
meaningful measure of predictability in case of any
unevenness in the data.

While the results demonstrate the plausibility of using
SVM for identification of the binding residues, they illustrate
the need for further improvement. Using the above features,
SVM has identified sufficient discriminatory patterns to
predict binding residues with a comparatively high accuracy. 

IV. CONCLUSION 

In the current work we have implemented SVM for the
identification of binding residues in DNA-binding proteins 
with high accuracy. Mean accuracy and net prediction values 
for the leave-one-out at the residue level are 80% and 70%, 
and those at the protein level are 65% and 63% respectively.
For the holdout evaluation the corresponding values are 75% 
and 65%. These values depend on the validation technique
and are higher than earlier studies by others with various
machine learning techniques. We also recorded a much
higher sensitivity and positive prediction values than
previous similar studies [9]. However, these values need to be 
pushed further, especially sensitivity and positive prediction.
Features that can better characterize the binding residues will
be very helpful in correctly identifying binding residues.

At the protein level, all residues from one protein were left
out. Residues from all other proteins were used for training
and the residues of the left-out protein were then used for 
testing. The percentage of residues correctly predicted is
reported as the accuracy for each protein. 

At the protein level, the prediction power of SVM was not
as high as at the residue level (Fig. 2). The mean accuracy was
around 66% whereas the net prediction was comparable to the
corresponding value at the residue level. Sensitivity values 
fluctuated again from 10% to 87% with a mean of around
43%. This means that at the protein level SVM could not
identify as many true positives, though it showed almost 81%
success (specificity) in recognizing non-binding residues.

Selection of meaningful feature vectors coupled with a
powerful kernel function leads to a higher success in
prediction of binding residues. In addition to features
employed in previous attempts, we used secondary structure,
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Fig. 3. Box-and-whisker plot of prediction performance for holdout 
evaluation.

the average potential and the charge on a residue as
descriptors. When used in isolation, these features might not
effectively differentiate the binding residues from the
non-binding ones, but when mapped to a higher dimensional
kernel space in the SVM, they provide more information
allowing for a higher accuracy in prediction. 

Fig. 4. Prediction of the binding residues on 1pue as an example. DNA and 
protein are shown in the black and gray tube representation.
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